An efficient semi-coarsening multigrid method for variable diffusion problems in cylindrical coordinates

نویسندگان

  • Ming-Chih Lai
  • Chin-Tien Wu
  • Yu-Hou Tseng
چکیده

In this paper, we present an efficient multigrid (MG) algorithm for solving the three-dimensional variable coefficient diffusion equation in cylindrical coordinates. The multigrid V-cycle combines a semi-coarsening in azimuthal direction with the red-black Gauss–Seidel plane (radial-axial plane) relaxation. On each plane relaxation, we further semi-coarsen the axial direction with red-black line relaxation in the radial direction. We also prove the convergence of two-level MG with plane Jacobi relaxation. Numerical results show that the present multigrid method indeed is scalable with the mesh size. © 2006 IMACS. Published by Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial semi-coarsening multigrid method based on the HOC scheme on nonuniform grids for the convection-diffusion problems

A partial semi-coarsening multigrid method based on the high order compact (HOC) difference scheme on nonuniform grids is developed to solve the two dimensional (2D) convection-diffusion problems with boundary or internal layers. The significance of this study is that the multigrid method allows different number of grid points along different coordinate directions on nonuniform grids. Numerical...

متن کامل

A fast iterative solver for the variable coefficient diffusion equation on a disk

We present an efficient iterative method for solving the variable coefficient diffusion equation on a unit disk. The equation is written in polar coordinates and is discretized by the standard centered difference approximation under the grid arrangement by shifting half radial mesh away from the origin so that the coordinate singularity can be handled naturally without pole conditions. The resu...

متن کامل

Convergence Analysis of V-Cycle Multigrid Methods for Anisotropic Elliptic Equations

Fast multigrid solvers are considered for the linear systems arising from the bilinear finite element discretizations of second order elliptic equations with anisotropic diffusion. Optimal convergence of Vcycle multigrid method in the semi-coarsening case and nearly optimal convergence of V-cycle multigrid method with line smoothing in the uniformly coarsening case are established using the XZ ...

متن کامل

Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method.

An efficient semi-implicit Fourier spectral method is implemented to solve the Cahn-Hilliard equation with a variable mobility. The method is orders of magnitude more efficient than the conventional forward Euler finite-difference method, thus allowing us to simulate large systems for longer times. We studied the coarsening kinetics of interconnected two-phase mixtures using a Cahn-Hilliard equ...

متن کامل

Non-Galerkin Multigrid Based on Sparsified Smoothed Aggregation

Algebraic Multigrid (AMG) methods are known to be efficient in solving linear systems arising from the discretization of partial differential equations and other related problems. These methods employ a hierarchy of representations of the problem on successively coarser meshes. The coarse-grid operators are usually defined by (Petrov-)Galerkin coarsening, which is a projection of the original o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006